
TypeJinja: Static Type Checking of Jinja Templates at dbt Labs
Cheng Ding

The University of Texas at Austin
United States

cheng.ding@utexas.edu

Zhong Xu
dbt Labs

United States
zhong.xu@dbtlabs.com

Michael Y. Levin
dbt Labs

United States
michael.levin@dbtlabs.com

Wolfram Schulte
dbt Labs

United States
wolfram.schulte@dbtlabs.com

Milos Gligoric
The University of Texas at Austin

United States
gligoric@utexas.edu

Abstract

Jinja is a templating language widely used in many domains, in-
cluding web development and data engineering. At dbt Labs, we
extensively use Jinja to enable dynamic SQL rendering via the dbt
fusion engine, a popular data transformation tool. However the
flexibility of Jinja templates (i.e., lack of types) can lead to errors in
the rendered SQL code, which can be costly to debug and fix. To
address this issue, we present the design and implementation of
TypeJinja: a typed version of the Jinja language and its integration
with the dbt fusion engine. TypeJinja statically analyzes Jinja tem-
plates and their context to detect type errors, before rendered SQL
code ends up being used, providing developers with early feedback.
Furthermore, TypeJinja is designed to be extensible, allowing it to
be adapted to different use cases. We have evaluated TypeJinja on
our codebase and found 30 previously unknown type errors, demon-
strating its effectiveness in improving code quality and reducing
debugging effort. TypeJinja is now part of the publicly available
GitHub repository that hosts the dbt fusion engine.

CCS Concepts

• Software and its engineering → Domain specific languages;
Data types and structures; • Information systems → Struc-

tured Query Language.

Keywords

Jinja, Program Analysis, Type Checking, Data Transformation

ACM Reference Format:

Cheng Ding, Zhong Xu, Michael Y. Levin, Wolfram Schulte, and Milos
Gligoric. 2026. TypeJinja: Static Type Checking of Jinja Templates at dbt Labs.
In 2026 IEEE/ACM 48th International Conference on Software Engineering
(ICSE-SEIP ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3786583.3786905

1 Introduction

Jinja [36] is a widely used templating language that allows de-
velopers to embed programmatic constructs into text-based docu-
ments. Originally used for web development, it has since become a

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE-SEIP ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2426-8/2026/04
https://doi.org/10.1145/3786583.3786905

Figure 1: The workflow of dbt. TypeJinja catches type errors

before models even go through rendering.

general-purpose templating engine employed across a wide range
of domains [28, 34, 38].

At dbt Labs [10], where we focus on the data engineering ecosys-
tem,we heavily use Jinja forwriting data transformation pipelines [6].
We maintain a fork of MiniJinja [23], which is a Rust-based reim-
plementation of the popular Jinja templating engine. As shown in
Figure 1, a user writes templates (known as models in our domain)
that MiniJinja renders into SQL queries. MiniJinja enables users
to easily compose modular query fragments and conditional logic
that adapts to various SQL dialects (e.g., Snowflake, BigQuery).

By blending Python-like syntax (from Jinja) with SQL, dbt em-
powers developers to express complex data transformations in a
more maintainable and reusable fashion.

However, this flexibility comes at a cost. Because MiniJinja is
dynamically typed (like Python and JavaScript), errors in models’
logic often remain latent until the rendered SQL is executed. The
consequences of these errors can be significant, because SQL code
executes against production databases and can perform unexpected
transformations. Mistakes in type usage, such as passing a string
where a numeric value is expected or invoking a macro with in-
correct argument types, can lead to subtle bugs that are difficult
to detect. In practice, many such issues escape into production,
because only extreme levels of exhaustive testing for dynamically
typed languages could match the power of static type checking for
discovering type errors. Writing exhaustive tests for all possible
model inputs is infeasible, and failures may only appear in some
specific inputs. Engineers at dbt Labs have observed that these prob-
lems lead to significant maintenance overhead, debugging effort,
and in some cases silent incorrectness of rendered SQL queries.

To address this problem, we introduce TypeJinja: the design and
implementation of a typed version of MiniJinja language used at

1

https://doi.org/10.1145/3786583.3786905
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786583.3786905

ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ding et al.

1 {# (list[string]) -> string #}{# (list[string]) -> string #}
2 {% macro generate_payment_amounts(payment_methods) %}
3 select
4 order_id,
5 {% for payment_method in payment_methods %}
6 sum(case when payment_method = '{{payment_method}}' then amount end) as {{payment_method}}_amount,
7 {% endfor %}
8 sum(amount) as total_amount
9 from app_data.payments
10 group by 1
11 {% endmacro %}

(a) Jinja model.

1 select
2 order_id,
3 sum(case when payment_method = 'bank_transfer' then amount end) as bank_transfer_amount,
4 sum(case when payment_method = 'credit_card' then amount end) as credit_card_amount,
5 sum(case when payment_method = 'gift_card' then amount end) as gift_card_amount,
6 sum(amount) as total_amount
7 from app_data.payments
8 group by 1

(b) Rendered SQL.

Figure 2: Comparison of a Jinja model (a) and its rendered SQL (b), shown in dbt’s official documentation [9].

dbt Labs. We implemented TypeJinja and integrated it into the dbt
workflow, as shown in Figure 1. Our approach integrates a type-
checking phase directly into the MiniJinja compilation phase. After
a model is parsed into an Abstract Syntax Tree (AST) and trans-
lated into a MiniJinja intermediate representation (IR), TypeJinja
analyzes the IR before IR instructions are rendered into SQL. By
reasoning about the types of variables, macro parameters, and ex-
pressions at the IR instruction level, we can identify errors without
rendering the models or requiring concrete inputs for models. Our
analysis proceeds through a flow-sensitive data-flow framework,
checking that each IR instruction is consistent with the type system
we define.

This allows dbt users to catch mismatches such as undefined
variables, invalid macro calls, or unsafe attribute accesses early in
the development.

Applying TypeJinja to a large collection of MiniJinja models,
drawn from dbt libraries which contain a large number of reusable
macros discovered a substantial number of unknown bugs in those
models. Specifically, we analyzed a project containing 178 models
comprising 6,869 lines of code, and TypeJinja uncovered 30 distinct
type errors. Many of these errors were subtle and would have been
extremely difficult to identify using tests alone, such as macros
invoked with missing arguments or variables that are only defined
along some control-flow branches but then used in others where
they may be undefined.

As expected, our results demonstrate that static type checking
provides a powerful complement to existing testing strategies, sub-
stantially improving the reliability of MiniJinja models in produc-
tion settings.

We also aimed to improve usability and extensibility of Type-
Jinja. One challenge with applying type systems to templating

languages is that dbt employs domain-specific abstractions that are
not captured by a fixed set of built-in types. To accommodate this
diversity, TypeJinja allows dbt developers to declare user-defined
types, structs, and functions in a lightweight YAML specification.
These user-defined constructs are automatically registered with the
type checker and can be used in the definition of macros just like
built-in types.

Finally, we integrated the type checker with the Language Server
Protocol (LSP) [22] for the dbt VS Code extension [11]. This inte-
gration provides immediate feedback while developers edit models,
surfacing type errors even before the full type checking is invoked.
Features such as type hints and goto-definition are powered by our
type checking engine. These capabilities bring the experience closer
to that of statically typed programming languages, lowering the
barrier to adoption and reducing the mental effort required to work
with complex models. Together, these extensions make TypeJinja
not just a back-end checker, but an interactive tool that supports
developers throughout their workflow.

In summary, we make the following key contributions:
★ We designed and developed the first typed version of the Jinja

language.
★ Our type checker is extensible and can be adapted as the set of

types and functions evolve inside dbt.
★ We integrated TypeJinja into the dbt fusion engine, and used our

analyses to empower the dbt VS Code extension.
★ We evaluated our type checker on a number of dbt Jinja models.

We find that TypeJinja is efficient and it successfully discovered
several issues in production models.

2

TypeJinja: Static Type Checking of Jinja Templates at dbt Labs ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Figure 3: The workflow (top) and example (bottom) of the Jinja engine.

Our code is publicly available as part of the dbt fusion engine on
GitHub: https://github.com/dbt-labs/dbt-fusion.

2 Background

In this Section, we provide a brief introduction to dbt (Section 2.1),
Jinja (Section 2.2), and type checking for dynamic languages (Sec-
tion 2.3).

2.1 dbt

Data Build Tool (dbt) is an analytics engineering framework that
focuses on the Transform stage of the Extract, Load, Transform
(ELT) workflow [6]. It allows dbt users to define a transformation
pipeline of data in a warehouse and then orchestrates the pipeline
in the correct order. By design, dbt does not move data out of the
warehouse; instead, it renders transformation logic (SQL) from
models, then executes the rendered SQL where the data already
resides. This approach ensures scalability and takes advantage of
the performance characteristics of modern data platforms.

At a high level, a transformation pipeline in dbt is organized
into a project. A project consists of a configuration file, written
in YAML, together with one or more models (which are placed
in packages). The project defines the execution context, including
schemas, connection details, and environment-specific options.

The central unit of work in dbt is the model. A model is typi-
cally a file that defines a transformation as a single query. These
models are stored as code within a project directory. While at the
surface definition of a model may look simple, the execution can
become complex, depending on the size of the data, the warehouse
characteristics, and the dependency structure among models. Mod-
els within a project can reference one another, forming a directed
acyclic graph (DAG) that dbt uses to determine execution order.
This structure enables clear data lineage, modular development,
and consistent reuse across complex transformation pipelines. As
projects evolve, models are frequently revised to reflect new busi-
ness requirements and to improve efficiency.

Developers often use templating to keep models concise and
flexible. For example, consider Figure 2, adapted from the dbt official
documentation [9]. In the Jinja model in Figure 2a, in line 1 and
line 2, we define a macro with its signature. We discuss signatures

in more detail in later sections. On line 5, a loop will iterate over
the parameter of the macro, generating one aggregation clause
for every element in the list of payment_methods. This lets the
developer maintain only a single model, even if the set of payment
methods changes later.

Models are rendered by dbt into SQL queries (e.g., by running the
dbt compile command). When the macro is called with parame-
ter payment_methods = ['bank_transfer', 'credit_card', '
gift_card'], the rendered SQL query is shown as Figure 2b. Line 3
corresponds to the aggregation over bank_transfer, and similar
lines are produced for credit_card and gift_card. In this way,
templating keeps the source model concise and reusable while still
rendering SQL queries that can be executed directly against the
data warehouse (e.g., by running the dbt run command).

2.2 Jinja

Within dbt, models are written using the Jinja templating lan-
guage [36]. Jinja is a general-purpose templating engine for Python.
It allows developers to embed variables, loops, conditionals, macros,
and filters into otherwise static text files. In dbt, this capability is
used to enrich models with dynamic behavior. When dbt executes
a project (Figure 1), it first renders the Jinja models with the pro-
vided context and then executes the resulting SQL code directly
against the data warehouse. This approach enables developers to
adapt transformations to different use cases, reuse common SQL
fragments, and keep their projects concise and consistent. Outside
of dbt, Jinja is widely used in systems such as Flask [35] for gen-
erating HTML pages, Ansible [28] for configuring infrastructure,
and Apache Superset [15] for writing parameterized SQL queries
in dashboards.

The workflow of Jinja (which corresponds to box “Jinja render-
ing” in Figure 1) is illustrated in Figure 3.When amodel is processed,
the engine first performs 1○ lexing, turning the raw model string
into a sequence of tokens that distinguish between literal text, ex-
pressions, and control structures. Next comes 2○ parsing, in which
these tokens are transformed into an Abstract Syntax Tree (AST)
representing the structure of the model. The parser output is then
passed to a 3○ code generation phase, which produces Jinja interme-
diate representation (IR) corresponding to the model logic. Finally,

3

ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ding et al.

during 4○ rendering, the instructions are interpreted with a specific
context of variable bindings, producing the rendered SQL code.

The advantages of Jinja come from its ability to separate static
structure from dynamic content. By isolating reusable fragments
into macros and reusable blocks of template code, it reduces du-
plication and simplifies maintenance. Dynamic rendering allows
models to adapt to diverse business requirements, deployment envi-
ronments, or user inputs without requiring manual rewriting. In the
context of dbt, these benefits translate into modular, parameterized,
and easily maintainable models that can scale as projects grow.

2.3 Type checking in dynamic languages

Type checking [14, 25, 29, 30] is the process of verifying that values
used in code are compatible with the types expected by macros,
variables, or expressions. For example, a type checker ensures that
a number is not combined with a string in an arithmetic operation
and that a macro receives arguments of the correct types. This
checks can take place before code execution through static analysis
or at runtime when the code is executed. Some languages combine
both approaches by allowing gradual addition of type information.

The main advantage of static type checking is the early detec-
tion of errors. Type mismatches can be caught before being ex-
ecuted, which prevents runtime failures and reduces debugging
effort. Types also serve as lightweight documentation, making code
easier to read and understand by clearly indicating expected in-
puts and outputs. As projects grow, type information provides a
scaffold that helps developers maintain consistency across many
components. Modern tools such as analyzers and editors can fur-
ther use types to offer features like smarter autocompletion, error
highlighting, and safer refactoring.

Languages such as Python and JavaScript are dynamically typed
and therefore traditionally defer type checking until runtime. To
improve reliability, their ecosystems have added optional static
typing systems. In Python, developers can annotate code with type
hints (using the typing package) and use tools such as mypy [13]
to check the types before program execution. TypeScript is a typed
superset of JavaScript that is compiled to plain JavaScript.

In dbt, Jinja models are rendered into SQL code that is executed
against a data warehouse. In the specific case, type errors often
only surface during execution of the rendered SQL. Applying static
type checking in this context ensures that rendered SQL code is
consistent with expectations and reduces the risk of subtle, hard-
to-diagnose failures in production.

3 Example

To illustrate TypeJinja, we showcase an error that our type checker
uncovered. The model, which is from dbt internal packages, as
shown in Figure 4, defines an incremental materialization [8]. We
leave out the details of incremental materialization, because it is
not relevant for the work presented here, but the key takeaway is
that the shown code is frequently used in practice. Errors in this
model can therefore have direct impacts on dbt users.

In this example, the model calls load_cached_relation(this)
(line 5) to retrieve an existing relation if it exists, or to return None
if no such relation exists, as shown in the signature in line 1 in
the above subfigure in Figure 4. Afterward, the model computes a

1 {# (relation) -> optional[relation] #}{# (relation) -> optional[relation] #}
2 {% macro load_cached_relation(relation) %}

3 {% materialization incremental, default -%}
4 -- relations
5 {%- set existing_relation = load_cached_relation(this)

-%}
6 {%- set target_relation = this.incorporate(type='table'

) -%}
7 ...
8 -- configs
9 {%- set unique_key = config.get('unique_key') -%}
10 {%- set full_refresh_mode = (should_full_refresh() or

existing_relation.is_view) -%}
11 -- trying to access attribute on a possibly None object

Figure 4: A bug in an internal dbt Jinjamodel: attribute access

on a possibly None object.

configuration variable full_refresh_mode (line 10) by evaluating
the expression should_full_refresh or existing_relation.is
_view. The intention is to check whether a full refresh should be
triggered or, alternatively, whether the existing relation is a view.

The subtle problem is that if load_cached_relation returns
None, then the variable existing_relation does not refer to a
valid object. As a result, the subsequent attribute access existing_
relation.is_view attempts to read a field on a None value. When
rendering, this causes a NoneType attribute error and the entire
model fails.

Detecting this error through testing is non-trivial. A test would
need to precisely simulate rare conditions where (1) the SQL di-
alect used in this dbt project is PostgreSQL, (2) the length of this.
identifier is greater than 63 characters, under which the load_
cached_relationmacro returns None. Regression tests commonly
do not cover these scenarios, which means the error can remain
hidden until it unexpectedly surfaces in production.

Our type checker, TypeJinja, exposes this error statically be-
fore rendering. By reasoning about the possible return types of
macro load_cached_relation, the checker infers that the vari-
able existing_relation may be either of type Relation or None.
When encountering the expression existing_relation.is_view,
it identifies that one of the possible branches attempts an invalid
attribute access on None and reports a type error. This error guides
the developer to insert a defensive check, such as if existing_
relation is not None, before accessing attributes.

This example demonstrates three key points. First, dbt models
used in analytics pipelines can contain subtle errors that are easy
to overlook during development. Second, such errors may have sig-
nificant impacts, yet are difficult to detect through testing. Finally,
a static type checker such as TypeJinja provides a lightweight and
reliable way to catch these problems early, before they reach produc-
tion. By integrating type analysis into the development workflow,
we can prevent costly failures and ensure that dbt models are both
correct and robust.

4 Approach

In this Section, we describe the design and implementation details of
TypeJinja. Specifically, we cover our typed language (Section 4.1),

4

TypeJinja: Static Type Checking of Jinja Templates at dbt Labs ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Notation. Γ is the typing environment (maps variables/attributes/functions to types);
Σ is the value stack;𝑇1 (Σ) is the top,𝑇2 (Σ) the second, and in general𝑇𝑖 (Σ) the 𝑖-th from the top. Typing rules are stack-based: an instruction pops the required operand values

from the top of Σ (e.g.,𝑇1 (Σ),𝑇2 (Σ), . . .) and pushes the produced value(s) back onto Σ.
A judgment (Γ, Σ) ⊢ Instr : 𝜏 states that, under Γ and Σ, executing Instr pushes a value of type 𝜏 onto the stack.

Environment updates are written (Γ, Σ) ⊢ Instr ⊲ Γ′ ; such rules update Γ but do not push values onto Σ.
Function types are (𝜏1, . . . , 𝜏𝑛) → 𝜎 ; typeof (𝑣) is the type of constant 𝑣.

Add
𝑇1 (Σ) : 𝜏,𝑇2 (Σ) : 𝜏 ∈ Γ

𝜏 ∈ {𝐼𝑛𝑡, 𝐹𝑙𝑜𝑎𝑡 }
(Γ, Σ) ⊢ Add : 𝜏

Sub
𝑇1 (Σ) : 𝜏,𝑇2 (Σ) : 𝜏 ∈ Γ

𝜏 ∈ {𝐼𝑛𝑡, 𝐹𝑙𝑜𝑎𝑡 }
(Γ, Σ) ⊢ Sub : 𝜏

Eq
𝑇1 (Σ) : 𝜏 𝑇2 (Σ) : 𝜏
(Γ, Σ) ⊢ Eq : Bool

Neg
𝑇1 (Σ) : 𝜏

𝜏 ∈ {𝐼𝑛𝑡, 𝐹𝑙𝑜𝑎𝑡 }
(Γ, Σ) ⊢ Neg : 𝜏

CallFun
𝑇1..𝑛 (Σ) : 𝜏1, . . . , 𝜏𝑛

𝐹 : (𝜏1, . . . , 𝜏𝑛) → 𝜎 ∈ Γ

(Γ, Σ) ⊢ CallFunction(𝐹,𝑛) : 𝜎

CallMet
𝑇1 (Σ) : 𝜏1 𝑇2..𝑛 (Σ) : 𝜏2, . . . , 𝜏𝑛
𝜏1 .𝐹 : (𝜏2, . . . , 𝜏𝑛) → 𝜎 ∈ Γ

(Γ, Σ) ⊢ CallMethod(𝐹,𝑛) : 𝜎
Store

𝑇1 (Σ) : 𝜏 ∈ Γ

(Γ, Σ) ⊢ StoreLocal(𝑥) ⊲ Γ [𝑥 ↦→ 𝜏]

Lookup
𝑥 : 𝜏 ∈ Γ

(Γ, Σ) ⊢ Lookup(𝑥) : 𝜏

GetAttr
𝑇1 (Σ) : 𝜏 𝜏 .name : 𝜎 ∈ Γ

𝜏 : Struct
(Γ, Σ) ⊢ GetAttr(name) : 𝜎

SetAttr
𝑇1 (Σ) : 𝜏1 𝑇2 (Σ) : 𝜏2 ∈ Γ

𝜏1 : Struct
(Γ, Σ) ⊢ SetAttr(name) ⊲ Γ [𝜏1 .name ↦→ 𝜏2]

GetItem
𝑇1 (Σ) : 𝜏idx 𝑇2 (Σ) : 𝜏base

𝜏base : Tuple 𝜏base [𝜏idx] : 𝜎 ∈ Γ

(Γ, Σ) ⊢ GetItem : 𝜎

Const

(Γ, Σ) ⊢ LoadConst(𝑣) : typeof (𝑣)

Figure 5: A subset of typing rules for Jinja IR instructions.

the type system (Section 4.2), the architecture (Section 4.3), and the
extensibility (Section 4.4).

4.1 Typed language

We informally define our typing approach in this section before we
formalize it in the subsequent sections.
Macro signatures. Each macro in TypeJinja is described by a
signature of the form (Type, ...)-> ReturnType (see an example
in Figure 2a, Line 1). Parameters may have explicit types, and the
return type specifies the value produced when the macro is invoked.
Primitive types. Our type system supports a set of primitive types:
Int, Float, Bool, String, Bytes, TimeStamp, and None. These types
represent the types of primitive values encountered in models,
such as numeric literals, booleans, string constants, byte sequences,
timestamps, and None values.
Container types. Composite structures are expressed using con-
tainer types. List[T] denotes a homogeneous sequence of elements
of type T; Tuple[T1,T2,. . .] represents a fixed-size, heterogeneous
sequence; Dict[K,V] represents mappings from keys of type K to
values of type V; and Struct{. . . } represents a record with named
fields, where each field has an associated type. These constructs
allow representation of complex structural data.
Unions and optionals. Union types express that a value may
belong to one of several alternatives, written A | B. Optionals are
syntactic sugar for a union with None, so optional[T] is equiva-
lent to T | None. These types are essential when model may yield
different kinds of results along different control-flow paths.
Subtyping. The type system includes a small but useful hierarchy
of subtypes. For example, Struct types are subtypes of more general
ones if all fields in the general type are present in the specific
type. Dictionaries with more specific key or value types can be
used where more general ones are expected. This subtyping design
enables reuse of macros and functions across a range of compatible
data shapes without sacrificing type safety.

Overall, these constructs–primitives, containers, unions, and
subtyping–provide a rich but practical foundation for checking
dbt Jinja models. They allow TypeJinja to represent the data and
control-flow patterns commonly seen in dbt projects while remain-
ing lightweight enough for fast analysis.

4.2 Type system

Typing rules. We formally define typing rules for a stack-based
Jinja IR abstract machine, that specify how each Jinja IR instruction
manipulates types.

Figure 5 presents a subset of typing rules for core IR instructions.
We only include a subset of rules due to the space limitations; the
included subset illustrates key ideas behind our approach.

For example, the CallFun rule describes the type checking of
a function call. F is the called function and 𝑛 is the number of
arguments to the function. The rule specifies that the argument
types must match the expected parameter types, and the result type
is determined by the function’s signature.

As another example, consider the GetAttr rule, which describes
the type checking for the IR instruction that gets the value of an
attribute from the object on top of the stack. The rule finds the type
of the object on top of the stack and then it takes the type of the
attribute 𝑛𝑎𝑚𝑒 from the type of the object.

In TypeJinja, multiple macros may share the same name, and
resolution follows a deterministic search order: first within the
current package, then in the root package of the project, and finally
in the internal dbt package provided by dbt Labs. This design en-
sures that both users can override built-in macros and that common
functionality can be shared across projects.
Checking. At the heart of our approach is instruction-level type
checking, inspired by the Java Virtual Machine (JVM) bytecode
verification algorithm introduced by Gosling and Yellin [17, 39]. In
the JVM, type correctness is ensured through an abstract interpreter
that simulates execution over types rather than concrete values.

5

ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ding et al.

Figure 6: The architecture of TypeJinja, corresponding to

the box “TypeJinja checking” in Figure 1.

We adopt a similar strategy for Jinja models. After generating IR
instructions from models, we decompose the instructions into basic
blocks and construct a control-flow graph (CFG). On this CFG, we
run a forward data-flow analysis that computes the type environ-
ment at each program point. The typing rules defined in our system
specify how each instruction consumes and produces values, and
the checker ensures that every instruction is consistent with the
expected types. Note that TypeJinja only verifies the internal type
consistency of Jinja models; it does not validate the correctness of
the rendered SQL.

When analyzing a model, a fixpoint computation is performed to
propagate type environments across this CFG and merge informa-
tion at join points. At join points, type environments are merged
so that conflicting bindings are generalized to a safe supertype
like Union. This design ensures that variables defined in one path
but not in another are properly tracked, and that errors such as
undefined variables are reported precisely. The use of the forward
data-flow analysis allows us to cover all possible execution paths,
ensuring that type consistency is maintained even in the presence
of complex control flow.

To make the data-flow analysis precise, we formalize the prop-
agation of type environments using the standard IN, OUT, GEN,
and KILL [1] sets for each basic block 𝑏 in the control-flow graph.
The set IN[𝑏] represents the typing environment at the entry of 𝑏,
and IN[𝑏0] is initialized to the builtin typing environment which
contains pre-defined variables and functions for the entry block
𝑏0, while OUT[𝑏] is the environment at its exit. New type bind-
ings introduced inside the block, such as variable definitions, are
collected in GEN[𝑏], whereas invalidated bindings (e.g., variable
redefinitions) are recorded in KILL[𝑏]. The transfer function for
each block follows the standard forward data-flow equations:

IN[𝑏] =
⋃

𝑝∈Pred(𝑏)
OUT[𝑝] (1)

OUT[𝑏] = GEN[𝑏] ∪ (IN[𝑏] \ KILL[𝑏]) (2)

In adapting bytecode verification ideas to MiniJinja, we track
variables, macro parameters, and expression types. Our rules incor-
porate the scoping model of Jinja, which includes local variables

within macros, macros defined in other models, and global context
variables. By handling these constructs, our type system enforces
safety across the full range of MiniJinja features.

The typing rules also address common sources of subtle errors
in templating. For instance, when an expression might yield either
a scalar or a container depending on context, the checker enforces
explicit handling of both cases. Similarly, when variables may be
undefined on some execution paths, the analysis warns developers
and encourages safe guards in the model logic.

4.3 Architecture

Figure 6 shows the architecture of TypeJinja. This figure corre-
sponds to the box “TypeJinja checking” in Figure 1. As the figure
shows, a Jinja model undergoes a multi-stage process before it pro-
duces the final rendered SQL. 1○ The model is first parsed into
an AST that records its syntactic structure. 2○ This AST is then
translated into IR instructions by the code generation component.
Finally, the IR instructions are interpreted by the Jinja interpreter,
producing the rendered SQL that downstream systems consume.

TypeJinja integrates directly into this workflow at the IR in-
struction level. This choice is deliberate: the IR serves as a compact,
semantics-preserving representation of the model. Operating at
this level ensures that TypeJinja captures the full expressive power
of the templating language, including control flow and macro calls.
This makes type checking both sound and portable across different
dbt projects, which often vary widely in their data models and
custom macros.

Before the data-flow analysis begins, the type-checker performs
two preprocessing steps. 3○ It first collects the type hints from
macros defined in the models, since the signatures of macros are
required for type checking. One example of the signature is shown
in line 1 in Figure 2. 4○ It reads from project-specific configuration
files to collect user-defined types, structs, functions and register
them into the type environment.

Next, after the model is parsed and IR instructions are generated,
the type checker proceeds with its core analysis. 5○ The instruction
stream is segmented into basic blocks and organized into a CFG.
6○ The data-flow analysis is then performed over this graph, prop-
agating type information according to the typing rules defined in
our type system.

By analyzing models immediately after instruction generation,
TypeJinja can provide early feedback. Errors are reported before
rendering, reducing the cost of rendering SQL and downstream
debugging. More importantly, the integration is non-intrusive: de-
velopers do not need to modify their models or the dbt workflow.
The results are exposed 7○ to the dbt VS Code extension through
the LSP listener or 8○ to the command line interface (CLI) through
the type-check listener, producing diagnostics that link directly
back to source locations in the original model. This ensures that
our contributions fit naturally into existing development practices.

4.4 Extensibility

A core requirement for TypeJinja is the extensibility. This is for two
reasons. First, dbt is an evolving systemwith new functions, macros,
and structs being added regularly. To remain useful, TypeJinja must
be able to adapt to these changes seamlessly. Second, developers

6

TypeJinja: Static Type Checking of Jinja Templates at dbt Labs ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

1 pub struct AgateTable {
2 repr: Arc<TableRepr>,
3 }
4 impl AgateTable {
5 pub fn columns(&self) -> Columns {
6 self.repr.columns()
7 }
8 pub fn column_names(&self) -> Vec<String> {
9 self.repr.column_names().map(|s| s.to_owned()).

collect()
10 }
11 pub fn rows(&self) -> Rows {
12 self.repr.rows()
13 }
14 }

(a) Rust implementation of AgateTable type.

1 ---
2 object:
3 id: agate_table
4 attributes:
5 - name: columns
6 type: list[api.column]
7 - name: column_names
8 type: list[string]
9 - name: __iter__
10 type: agate_table.__iter__
11 - name: rows
12 type: list[ANY]
13 ---
14 object:
15 id: agate_table.__iter__
16 call:
17 arguments: []
18 return-type: api.column
19 ---

(b) A user-defined type specification for agate_table in TypeJinja.

Figure 7: Implementation and type definition of AgateTable.
(a) shows its Rust implementation; (b) shows the correspond-

ing user-defined type used in TypeJinja.

who want to apply our type checker to other domains may need to
define their own types and functions that are specific to their use
cases. To remain useful in these settings, TypeJinja was designed
with explicit support for extensibility.

In many projects, developers work with domain concepts such
as Table, Column, or custom wrappers around strings and numbers.
Figure 7a shows an example of a Rust struct that represents a table.
These abstractions cannot be captured adequately by a small set of
built-in types. To address this, TypeJinja allows developers to define
user-specific types, structs and functions in a YAML configuration
file.

Figure 7b shows an example YAML file that declares such types.
Each object can be a struct or a method. In this case, two objects
are defined (lines 2 and 14) in the YAML file. The id field (lines 3
and 15) is the identifier of the object; it serves as the fully qualified
name by which other types can refer to it. Dots in an identifier (e.g.,
agate_table.__iter__ on line 15) indicate a field or a method of

an object. References such as api.column (line 18) denote a type
from the field column in the api object.

Each definition specifies the type id, its fields or methods, and its
relations to other types. These relations capture how objects con-
nect to one another through attributes or function signatures. For
example, a method may return another user-defined type (line 18),
enabling rich interactions between custom types. When the type
checker runs, these user-defined types are automatically registered
and integrated into the analysis (Figure 6 step 4○). As a result, mod-
els will be checked against these user-defined types rather than
being restricted to built-in types. This design ensures that viola-
tions of project conventions are flagged early, and it empowers
developers to encode domain knowledge directly into the type
system.

5 Usage

We integrated TypeJinja into the existing dbt workflow in two
ways: command-line interface and VS Code extension using the
Language Server Protocol [22].
Command line interface (CLI). For batch analysis and continu-
ous integration, TypeJinja provides a simple command-line inter-
face through the existing dbt tooling.

Developers can run dbt jinja-check command in any dbt
project, and the tool automatically discovers all models, parses
and analyzes these models, and reports any detected type errors.
Each analysis result includes the file path, line number, and an
explanation of the error, making it easy to trace problems back
to their source. The CLI is lightweight enough to be integrated
into CI/CD pipelines or pre-commit hooks, ensuring that new code
is type checked before it is merged, while adding only negligible
overhead to the build process.
Language server protocol (LSP) integration. Extensibility at the
type-system level is complemented in the developer workflow. Type-
Jinja provides an integration through the LSP, enabling features
available in modern programming environments directly inside
editors such as VS Code. The LSP extension provides type hints,
which annotate variables, macro arguments, and function results
with their inferred types. These hints give developers immediate
insight into the behavior of their models, reducing the cognitive
overhead of tracking types manually. Figure 8 shows a screenshot
of the VS Code LSP extension for TypeJinja.

By building on TypeJinja analysis, the LSP extension also sup-
ports goto-definition, allowing developers to navigate directly from
a variable or macro usage to its definition. This feature is especially
useful in large codebases where macros are frequently reused. Most
importantly, the LSP integration provides analysis results in real
time, surfacing type errors directly in the editor. Developers no
longer need to run the full type check to see whether a model is
valid: many issues are highlighted as soon as the code is written.
Figure 8 demonstrates how these features appear in practice.

6 Evaluation

We evaluate our type-checking system, TypeJinja, in the context
of dbt Labs’s production environment. The goal is to assess its
practical usefulness, scalability, and effectiveness in Jinja-based
SQL pipelines.

7

ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ding et al.

Figure 8: The screenshot of the VS Code LSP extension for TypeJinja, including the type hints and detailed type information

when hovering over variables.

Table 1: The performance measurements of TypeJinja on

the evaluation projects.

Project #Models LOC Time (ms)

𝑇𝑟𝑢𝑛 𝑇𝑡𝑐 𝑇𝑝𝑚

jaffle-shop 178 6,869 306 54 0.303
IA 3,106 162,428 21,277 402 0.129

Overall 3,284 169,297 21,583 456 0.139

• 𝑇𝑟𝑢𝑛 : end-to-end dbt jinja-check runtime;
• 𝑇𝑡𝑐 : time spent in type checking within that run;
• 𝑇𝑝𝑚 : average time spent in type checking per model.

Our evaluation is performed on a MacOS Sequoia 15.6 machine
with an Apple M4 Pro CPU and 24GB memory.

6.1 Performance

To evaluate performance and scalability, we measured the runtime
of TypeJinja when analyzing two dbt projects of different sizes,
ranging from small open-source example to large production code-
base that includes the dbt package containing a large number of
reusable macros provided to dbt users. Table 1 shows the names of
the projects (column 1)1, the number of models (column 2), total
number of lines of code across all the models (column 3), and time
for running dbt jinja-check command, time for TypeJinja within
that run, and average time for TypeJinja spent on analyzing each
model (column 4).

In dbt-fusion, dbt jinja-check runs a sequence of phases includ-
ing: Debug, Deps, Parse, Format, Lint, Schedule, List, Freshness, and
JinjaCheck. The phases before JinjaCheck handle the tasks needed
1We intentionally do not show the actual name of the internal project.

for the type checking phase, such as resolving dependencies, pars-
ing the models, and formatting the code. TypeJinja is executed
as part of this end-to-end workflow, so the total dbt jinja-check
time (𝑇𝑟𝑢𝑛) includes substantial costs beyond TypeJinja itself (𝑇𝑡𝑐).

TypeJinja successfully processed both projects without any
crashes or timeouts. Even the large project, containing thousands of
Jinja models, was type checked in less than one second. We also find
that the overhead introduced by type checking is minimal compared
to the overall runtime running dbt jinja-check. The per-model
analysis time remained low across both cases, demonstrating that
the approach scales well to production-scale workloads and can be
integrated into existing CI/CD pipelines without much overhead.

6.2 Type errors detected in practice

The evaluatedmodels were written by analytics engineers and cover
a wide variety of use cases, from simple aggregations to complex
incremental materializations [8].

The evaluation was conducted by running TypeJinja on the
entire codebase and collecting all reported type errors. In total,
TypeJinja reported 30 type errors, all of which were reviewed by
dbt developers and confirmed as true positives. This shows that the
tool is not only sound but also practically useful in uncovering real
problems that had previously gone unnoticed.

For these projects, we manually added TypeJinja type anno-
tations to the dbt macros used by the templates. We did not run
automated inference to generate these annotations for the evalua-
tion; however, in our experience the required macro annotations
are lightweight for an experienced dbt developer, and we plan to
explore automated annotation generation in future work.

We further analyzed the confirmed type errors and categorized
them into three patterns:

8

TypeJinja: Static Type Checking of Jinja Templates at dbt Labs ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

1 {%- set existing_relation = load_cached_relation(this) -%}
2 ...
3 {%- set full_refresh_mode = (should_full_refresh() or existing_relation.is_view) -%}
4 -- Type error: potential null dereference on existing_relation

(a) Null dereference on existing_relation: existing_relation could possibly be None while trying to access its

properties.

1 {# (model, bool, relation, agate_table) -> string #}{# (model, bool, relation, agate_table) -> string #}
2 {% macro reset_csv_table(model, full_refresh, old_relation, agate_table) -%}
3 ...
4 {%- set old_relation = adapter.get_relation(database=database, schema=schema, identifier=identifier) -%}
5 ...
6 {% set create_table_sql = reset_csv_table(model, full_refresh_mode, old_relation, agate_table) %}
7 -- Type error: passing optional relation to non-optional parameter

(b) Function argument mismatch: old_relation is an optional relation, however passed to a macro (see signature on

the first line) which accepts a non-optional parameter.

1 {% set should_revoke = should_revoke(existing_relation, full_refresh_mode=True) %}
2 {% do apply_grants(target_relation, grant_config, should_revoke=should_revoke) %}
3 -- Type error: unknown local variable 'grant_config'

(c) Use of undefined variable grant_config: grant_config is not defined anywhere while being used.

Figure 9: Representative bug patterns detected by TypeJinja: (a) null dereference, (b) function argument mismatch, and

(c) undefined variable. The error parts are highlighted in purple.

• Null dereference (17/30). Accessing attributes or invoking meth-
ods on variables that may be None, leading to runtime errors
during SQL rendering.

• Function argument mismatch (12/30). Passing arguments of
incorrect types to macros, that could result in runtime errors
during SQL rendering or unexpected behaviors during execution
of rendered SQL.

• Undefined variables (1/30). Using variables that are not defined
in the current scope, that could result in runtime errors during
SQL rendering.

Figure 9 shows representative examples of these patterns. The most
frequent class of bug was null dereference (Figure 9a), often ap-
pearing in incremental models where a cached relation may not
exist. Function argument mismatches (Figure 9b) typically arose in
macros that were widely reused among models, and undefined vari-
ables (Figure 9c) appeared in a complex model with nested scopes.
The distribution of bug types suggests that static type checking
is particularly valuable in catching subtle runtime errors that are
otherwise hard to detect with testing alone.

6.3 Discussion and insights

Our evaluation demonstrates that type checking in Jinja models is
both performant and beneficial in practice. These results suggest
best practices for template-based analytics pipelines. Developers
could apply type checking early in their workflow to prevent latent
bugs from propagating downstream. Macros and commonly used
utility functions benefit the most from type annotations, as they
serve as interfaces reused across many models.

7 Threats to Validity

Internal validity. A potential internal threat is that our evaluation
may contain undetected implementation errors in the type checker
itself, which could lead to false positives or negatives when report-
ing type errors. To mitigate this risk, we built extensive unit tests for
the core typing rules and compared their behavior against known
Jinja constructs. We also manually inspected a representative set of
analysis results to confirm that the reported errors correspond to
actual type mismatches. Another threat is that the realistic dbt code-
bases we analyzed might not cover every possible Jinja feature. We
reduced this risk by selecting a large, production-quality project
with diverse macros and control flow patterns, which exercises
the majority of the language features our system supports, while
some IR instructions that depend on runtime stack information re-
main unsupported. For example, the unpacklists instruction [12]
pushes values onto the stack based on the length of the list found
at runtime, which cannot be fully resolved statically. Moreover, at
the moment, manual effort is required to mark the signatures of
macros defined in Jinja models. Finally, TypeJinjamight report false
positives when models use macros that have no type signatures
(which does not happen in our evaluation), and it might report no
errors (false negatives) related to variables for which the type is
not known at its declaration.
External validity. A potential external threat is that our findings
may not generalize to all dbt projects or other templating environ-
ments beyond those we studied. However, our type system builds
on the stable IR instruction representation produced by MiniJinja,
which is designed to be semantics-preserving. Moreover, our sup-
port for user-defined types and macro signatures allows projects to

9

ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ding et al.

tailor the checker to their own conventions, making the approach
adaptable to a wide range of real deployments.

8 Related Work

We present related work in several areas: (a) templating languages,
(b) type systems, (c) static analysis, and (d) hygienic macros.
Templating languages. Templating languages are used to mix
text with dynamic content. They make it easier to build documents
or web pages by letting developers insert variables and simple
control structures such as loops and conditionals. Because of their
convenience, templating languages such as Jinja are widely used
in practice. However, this flexibility often comes at the cost of
safety, since many errors in templates are only discovered when
the program (which uses templates) is running.

Researchers have explored how to make safe templating lan-
guages. Heidenreich et al. [19] proposed rules for safe templating
languages that prevent common runtime failures. In addition, sev-
eral comparisons [7] show the wide variety of template engines
available and highlight differences in their features and safety mech-
anisms. In contrast to prior work, which designed new templating
languages with type safety, we focus on retrofitting static type
checking into an existing, widely used templating language.
Type systems. A type system is a set of rules that assigns types
to program elements, such as variables and functions, to help de-
tect errors before the program runs. Over decades, many type sys-
tems have been proposed to make programs safer and easier to
understand. In dynamic languages, type systems are especially
challenging because programs may generate new behavior while
the program is running (e.g., via metaprogramming). Ren et al. [29]
addressed this challenge in Ruby with just-in-time static type check-
ing, which defers the type checking after methods are created dur-
ing runtime and before execution to catch errors early.

Gradual typing [16, 31–33] is another important line of work. It
allows developers to start with dynamic typing and then gradually
add static types. Phipps-Costin et al. [26] introduced a solver-based
method to migrate dynamic typed programs towards static typing,
while Moy et al. [24] proposed a system that combines gradual
typing with static verification, moving some dynamic checks to
static, which makes checks sound and efficient. Previous work also
applies gradual typing to dynamic languages include Python [37]
and TypeScript [27].We differ from these works by focusing on type
checking in a domain-specific templating language, which requires
a type system designed for unique, domain-specific constructs.
Static analysis. Static analysis is the general term for techniques
that study code without running it. The goal is to detect errors,
enforce coding rules, and improve reliability before programs are
executed. Unlike testing, static analysis can give guarantees about
all possible executions of a program.

There has been extensive work on applying static analysis to
dynamic languages. Grech et al. [18] developed preemptive type
checking for such languages, allowing the earliest type error detec-
tion when an error is determined in some execution paths. Flana-
gan’s hybrid type checking [14] combines static analysis and dy-
namic checking to enforce precise type specifications by statically
verifying decidable cases and resorting to runtime checks for the
undecidable ones.

More broadly, static analysis has been applied to many domains
to discover potential problems early [2, 3, 40]. These efforts demon-
strate the power of static analysis in practice, and they provide
the foundation for adapting similar methods to template languages
such as Jinja.
Hygienic macros. Hygienic macros are a macro expansion disci-
pline that prevents accidental capture of identifiers: names intro-
duced by a macro cannot unintentionally bind or shadow names
from its use site, preserving lexical scope and referential trans-
parency [4, 5, 21]. Early macro systems established algorithms
that attach scope information to identifiers and systematically
rename bindings during expansion to maintain hygiene [4, 21].
Pattern-based systems such as syntax-rules and more general
syntax-case mechanisms have this behavior by construction, al-
lowing macros to expand safely while respecting the scoping rules
of the host language [5]. Subsequent research has sought to give
hygiene a precise formal description and to extend it to richer set-
tings. One line of work introduces explicit binding annotations to
break the circularity between macro expansion and 𝛼-equivalence,
proving that hygienic expansion preserves lexical scope as a se-
mantic property rather than just an algorithmic artifact [20]. Com-
prehensive historical and technical accounts survey the evolution
of hygienic macro technology and its adaptation to a range of lan-
guages beyond Scheme and Lisp [5]. TypeJinja macros provide
limited scope isolation through local variables and explicit parame-
ter passing, reducing some accidental name clashes but offering no
syntactic hygiene or protection against capture in rendered SQL.

9 Conclusions

Jinja is a templating language widely used in many domains, in-
cluding web development and data engineering. In particular, we
have extensively used Jinja to enable dynamic SQL rendering in
dbt, a popular data transformation tool. However the flexibility
of Jinja templates can lead to runtime errors during rendering or
when executing rendered SQL code, which can be costly to debug
and fix. To address this issue, we present TypeJinja, a static type
checker for Jinja templates. TypeJinja analyzes Jinja templates and
their context to detect type errors before executing rendered SQL,
providing developers with early feedback. TypeJinja is designed
to be extensible, allowing easy type extensions as dbt evolves and
enabling uses of the same framework for potential other uses of
our version of MiniJinja. We have evaluated TypeJinja on our inter-
nal Jinja codebases and found 30 previously unknown type errors,
demonstrating its effectiveness in improving code quality.

Acknowledgments

We thank Ivan Grigorik, Tong-Nong Lin, Aditya Thimmaiah, Zhiqi-
ang Zang, Linghan Zhong, and the anonymous reviewers for their
feedback on this work. We also thank many employees at dbt Labs
for their comments and support. The first author was an intern
at dbt Labs during Summer 2025. This work is partially supported
by the US National Science Foundation under Grant Nos. CCF-
2107291, CCF-2217696, CCF-2313027, and CCF-2403036. The views
expressed are those of the authors and do not necessarily reflect
those of sponsors.

10

TypeJinja: Static Type Checking of Jinja Templates at dbt Labs ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc. https://doi.org/10.5555/1177220

[2] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and
John Penix. 2008. Using static analysis to find bugs. IEEE Software 25, 5 (2008),
22–29. https://doi.org/10.1109/MS.2008.130

[3] B. Chess and G. McGraw. 2004. Static analysis for security. IEEE Security &
Privacy 2, 6 (2004), 76–79. https://doi.org/10.1109/MSP.2004.111

[4] William Clinger and Jonathan Rees. 1991. Macros that work. In Symposium on
Principles of Programming Languages. 155–162. https://doi.org/10.1145/99583.
99607

[5] William D. Clinger and Mitchell Wand. 2020. Hygienic macro technology. Proc.
ACM Program. Lang. 4, HOPL (2020). https://doi.org/10.1145/3386330

[6] Google Cloud. 2024. What is ELT? https://cloud.google.com/discover/what-is-elt.
[7] Wikipedia contributors. 2018. Comparison of Web Template Engines. https:

//en.wikipedia.org/wiki/Comparison_of_web_template_engines.
[8] dbt Labs. 2025. dbt Documentation: Incremental Materialization. https://docs.

getdbt.com/docs/build/materializations#incremental.
[9] dbt Labs. 2025. dbt Documentation: Jinja Macros. https://docs.getdbt.com/docs/

build/jinja-macros.
[10] dbt Labs. 2025. dbt Labs. https://www.getdbt.com/.
[11] dbt Labs. 2025. dbt VS Code Extension. https://docs.getdbt.com/docs/about-dbt-

extension.
[12] dbt Labs. 2025. Unpacklists command implementation in dbt-Jinja. https://github.

com/dbt-labs/dbt-fusion/blob/fcb812d2017f06f27e5edf96ca9ce65b75c79955/
crates/dbt-jinja/minijinja/src/vm/mod.rs#L590.

[13] Mypy Developers. 2025. Mypy: Optional Static Typing for Python. https://mypy-
lang.org/.

[14] Cormac Flanagan. 2006. Hybrid type checking. In Symposium on Principles of
Programming Languages. 245–256. https://doi.org/10.1145/1111037.1111059

[15] Apache Software Foundation. 2025. Apache Superset. https://github.com/apache/
superset.

[16] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting gradual
typing. In Symposium on Principles of Programming Languages. 429–442. https:
//doi.org/10.1145/2837614.2837670

[17] James Gosling. 1995. Java intermediate bytecodes: ACM SIGPLAN workshop
on intermediate representations (IR’95). SIGPLAN Not. 30, 3 (1995). https:
//doi.org/10.1145/202530.202541

[18] Neville Grech, Julian Rathke, and Bernd Fischer. 2013. Preemptive type checking
in dynamically typed languages. In Theoretical Aspects of Computing. 195–212.
https://doi.org/10.1007/978-3-642-39718-9_12

[19] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende, and
Marcel Böhme. 2009. Generating safe template languages. SIGPLAN Not. 45, 2
(2009), 99–108. https://doi.org/10.1145/1837852.1621624

[20] David Herman and Mitchell Wand. 2008. A theory of hygienic macros. In Pro-
gramming Languages and Systems. 48–62. https://doi.org/10.1007/978-3-540-
78739-6_4

[21] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. 1986.
Hygienic macro expansion. In Proceedings of the 1986 ACM Conference on LISP
and Functional Programming. 151–161. https://doi.org/10.1145/319838.319859

[22] Microsoft. 2025. Language Server Protocol. https://microsoft.github.io/language-
server-protocol/.

[23] Mitsuhiko. 2025. MiniJinja. https://github.com/mitsuhiko/minijinja.
[24] Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn.

2021. Corpse reviver: sound and efficient gradual typing via contract verification.
Proc. ACM Program. Lang. 5, POPL (2021). https://doi.org/10.1145/3434334

[25] Tobias Nipkow and Christian Prehofer. 1993. Type checking type classes. In
Symposium on Principles of Programming Languages. 409–418. https://doi.org/10.
1145/158511.158698

[26] Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun
Guha. 2021. Solver-based gradual type migration. Proc. ACM Program. Lang. 5,
OOPSLA (2021). https://doi.org/10.1145/3485488

[27] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis
Vekris. 2015. Safe & efficient gradual typing for TypeScript. In Symposium on
Principles of Programming Languages. 167–180. https://doi.org/10.1145/2676726.
2676971

[28] Inc. Red Hat. 2025. Ansible: a radically simple IT automation system. https:
//github.com/ansible/ansible/.

[29] Brianna M. Ren and Jeffrey S. Foster. 2016. Just-in-time static type checking
for dynamic languages. In Conference on Programming Language Design and
Implementation. 462–476. https://doi.org/10.1145/2908080.2908127

[30] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann.
2008. Type checking with open type functions. In International Conference on
Functional Programming. 51—62. https://doi.org/10.1145/1411204.1411215

[31] Jeremy Siek and Walid Taha. 2007. Gradual typing for objects. In European
Conference on Object-Oriented Programming. 2–27. https://doi.org/10.1007/978-
3-540-73589-2_2

[32] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages.
In Scheme and Functional Programming Workshop.

[33] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
2015. Refined criteria for gradual typing. In Summit on Advances in Programming
Languages. 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[34] Edgewall Software. 2024. Trac: an enhanced wiki and issue tracking system for
software development projects. https://trac.edgewall.org/.

[35] Pallets Team. 2025. Flask Documentation. https://github.com/pallets/flask.
[36] Pallets Team. 2025. Jinja Documentation. https://jinja.palletsprojects.com/en/

stable/.
[37] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.

Design and evaluation of gradual typing for Python. In Symposium on Dynamic
Languages. 45–56. https://doi.org/10.1145/2661088.2661101

[38] Inc. VMware. 2023. Salt: Software to automate the management and configuration
of any infrastructure or application at scale. https://www.saltproject.io/.

[39] Frank Yellin. 1995. Low level security in Java. In International Conference on
World Wide Web. 369–379. https://doi.org/10.1145/3592626.3592656

[40] J. Zheng, L.Williams, N. Nagappan,W. Snipes, J.P. Hudepohl, andM.A. Vouk. 2006.
On the value of static analysis for fault detection in software. Transactions on
Software Engineering 32, 4 (2006), 240–253. https://doi.org/10.1109/TSE.2006.38

11

https://doi.org/10.5555/1177220
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1145/99583.99607
https://doi.org/10.1145/99583.99607
https://doi.org/10.1145/3386330
https://cloud.google.com/discover/what-is-elt
https://en.wikipedia.org/wiki/Comparison_of_web_template_engines
https://en.wikipedia.org/wiki/Comparison_of_web_template_engines
https://docs.getdbt.com/docs/build/materializations#incremental
https://docs.getdbt.com/docs/build/materializations#incremental
https://docs.getdbt.com/docs/build/jinja-macros
https://docs.getdbt.com/docs/build/jinja-macros
https://www.getdbt.com/
https://docs.getdbt.com/docs/about-dbt-extension
https://docs.getdbt.com/docs/about-dbt-extension
https://github.com/dbt-labs/dbt-fusion/blob/fcb812d2017f06f27e5edf96ca9ce65b75c79955/crates/dbt-jinja/minijinja/src/vm/mod.rs##L590
https://github.com/dbt-labs/dbt-fusion/blob/fcb812d2017f06f27e5edf96ca9ce65b75c79955/crates/dbt-jinja/minijinja/src/vm/mod.rs##L590
https://github.com/dbt-labs/dbt-fusion/blob/fcb812d2017f06f27e5edf96ca9ce65b75c79955/crates/dbt-jinja/minijinja/src/vm/mod.rs##L590
https://mypy-lang.org/
https://mypy-lang.org/
https://doi.org/10.1145/1111037.1111059
https://github.com/apache/superset
https://github.com/apache/superset
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/202530.202541
https://doi.org/10.1145/202530.202541
https://doi.org/10.1007/978-3-642-39718-9_12
https://doi.org/10.1145/1837852.1621624
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1145/319838.319859
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/mitsuhiko/minijinja
https://doi.org/10.1145/3434334
https://doi.org/10.1145/158511.158698
https://doi.org/10.1145/158511.158698
https://doi.org/10.1145/3485488
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971
https://github.com/ansible/ansible/
https://github.com/ansible/ansible/
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.1145/1411204.1411215
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://trac.edgewall.org/
https://github.com/pallets/flask
https://jinja.palletsprojects.com/en/stable/
https://jinja.palletsprojects.com/en/stable/
https://doi.org/10.1145/2661088.2661101
https://www.saltproject.io/
https://doi.org/10.1145/3592626.3592656
https://doi.org/10.1109/TSE.2006.38

	Abstract
	1 Introduction
	2 Background
	2.1 dbt
	2.2 Jinja
	2.3 Type checking in dynamic languages

	3 Example
	4 Approach
	4.1 Typed language
	4.2 Type system
	4.3 Architecture
	4.4 Extensibility

	5 Usage
	6 Evaluation
	6.1 Performance
	6.2 Type errors detected in practice
	6.3 Discussion and insights

	7 Threats to Validity
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

